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A B S T R A C T   

A novel biomarker panel was proposed to quantify macro and microstructural biomarkers from the normal- 
appearing brain matter (NABM) in multicentre fluid-attenuation inversion recovery (FLAIR) MRI. The NABM 
is composed of the white and gray matter regions of the brain, with the lesions and cerebrospinal fluid removed. 
The primary hypothesis was that NABM biomarkers from FLAIR MRI are related to cognitive outcome as 
determined by MoCA score. There were three groups of features designed for this task based on 1) texture: 
microstructural integrity (MII), macrostructural damage (MAD), microstructural damage (MID), 2) intensity: 
median, skewness, kurtosis and 3) volume: NABM to ICV volume ratio. Biomarkers were extracted from over 
1400 imaging volumes from more than 87 centres and unadjusted ANOVA analysis revealed significant differ-
ences in means of the MII, MAD, and NABM volume biomarkers across all cognitive groups. In an adjusted 
ANCOVA model, a significant relationship between MoCA categories was found that was dependent on subject 
age for MII, MAD, intensity, kurtosis and NABM volume biomarkers. These results demonstrate that structural 
brain changes in the NABM are related to cognitive outcome (with different relationships depending on the age 
of the subjects). Therefore these biomarkers have high potential for clinical translation. As a secondary hy-
pothesis, we investigated whether texture features from FLAIR MRI can quantify microstructural changes related 
to how “structured” or “damaged” the tissue is. Based on correlation analysis with diffusion weighted MRI 
(dMRI), it was shown that FLAIR MRI texture biomarkers (MII and MAD) had strong correlations to mean 
diffusivity (MD) which is related to tissue degeneration in the GM and WM regions. As FLAIR MRI is routinely 
collected for clinical neurological examinations, novel biomarkers from FLAIR MRI could be used to supplement 
current clinical biomarkers and for monitoring disease progression. Biomarkers could also be used to stratify 
patients into homogeneous disease subgroups for clinical trials, or to learn more about mechanistic development 
of dementia disease.   

1. Introduction 

Half a million Canadians are living with dementia and 25,000 new 

cases are diagnosed every year. By 2031, this is expected to increase by 
66% to more than 1 million Canadians, carrying a $16.6B cost per year 
to care for them (Chambers et al., 2016). Up until recently (FDA, 2021), 
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there were numerous failed clinical trials targeting amyloid-beta pla-
ques (Yiannopoulou et al., 2019). More research is needed to identify 
early precursors of cognitive decline and neurodegeneration, to detect 
disease early, monitor disease progression and to develop new therapies. 
Magnetic resonance imaging (MRI) shows brain damage accumulating 
in near-real time (Smith et al., 2019) and neuroimaging biomarkers from 
MRI are great candidates for disease monitoring and quantification. 

Studies have investigated the relationship of macro- and micro- 
structural biomarkers in MRI of the brain to Alzheimer’s disease (AD) 
(first risk factor for dementia), and vascular disease (second dementia 
risk factor), including gray matter (GM) atrophy (Pini et al., 2016), 
ventricular enlargement (Nestor et al., 2008), white matter (WM) 
integrity (Ji et al., 2017) and white matter lesions (WML) (Frey, 2019; 
Oishi et al., 2008). In a meta-review (Lamar et al., 2020), the authors 
searched for commonalities between brain pathology in AD and cere-
brovascular disease (CVD) risk factors. In total, 23 spatial regions were 
commonly associated with both CVD risk factors and Alzheimer’s de-
mentia, including GM and subcortical structures, WM integrity and 
WML. 

Gray matter atrophy has been studied for years for both dementia 
(Khan, 2016) and vascular diseases. One study controlled for vascular 
disease and examined both WM damage and GM pathology using 
diffusion MRI (dMRI) metrics fractional anisotropy (FA) and mean 
diffusivity (MD), and postulated that GM atrophy is secondary to WM 
damage (Pievani et al., 2010). For patients with CADASIL (genetic form 
of small vessel disease), more WM damage such as lacunes could induce 
more cortical thinning by impairing the microstructure of the WM tracts 
(Liu et al., 2021). White matter lesions, which are established CVD 
markers, predict cognitive decline, dementia, stroke, death, and WML 
progression increases these risks (Debette and Markus, 2010; Alber 
et al., 2019). WML represent increased and altered water content in 
hydrophobic white matter fibers and tracts. Changes in white matter 
vasculature likely contributes to WML pathogenesis (Gorelick et al., 
2011). In Liu et al. (2021), WM tracts distal to WML were shown to have 
reduced integrity which is associated to a reduction of executive func-
tion and attention, which are both related to CVD. In Meng et al. (2017), 
the location of WML was found to play more of an important role on 
cognition, as compared to traditional total-lesion load measurements 
and implied that large-scale disconnection of networks could be the 
reason. 

White matter disease spreads beyond the area of the visible FLAIR 
lesion and these subtle “pre-visible” alterations may be important 
vascular clues (Maniega et al., 2016). There is an increase in water 
diffusion in these regions which correlate to cognitive impairment 
(Smith et al., 2019). As shown in dMRI and FLAIR, WML that grow and 
develop de novo are preceded by changes in the normal-appearing white 
matter (NAWM). WM damage was seen as focal and cumulative effects 
of CVD and was a better predictor of cognition as compared to lesion 
load (Meng et al., 2017). In Zamboni et al. (2017), a lower FA in the WM 
correlated to a lower MoCA score indicating there is more widespread 
WM damage in patients with dementia. They also noted that FA and MD 
correlated more closely with cognitive deficits in vascular cognitive 
impairment (VCI). Dumont et al. (2019) computed a measure called 
free-water (FW) from dMRI which is the fraction of the diffusion signal 
described by isotropically unconstrained water. FW was able to differ-
entiate normal controls (NC) from subjects with mild cognitive impair-
ment (MCI) and AD and it is postulated that the differences are due to 
FW in the extracellular space around the axons or contamination from 
the CSF suggesting increased neuroinflammation. 

Fluid Attenuation Inversion Recovery (FLAIR) MRI is preferred for 
WML analysis (Badji and Westman, 2020; Wardlaw et al., 2013; Gha-
foorian et al., 2016; Chutinet and Rost, 2014), since the high signal from 
the cerebrospinal fluid (CSF) in T2 is suppressed, thus highlighting white 
matter disease (Lao et al., 2008). This is due to increased water content 
secondary to ischemia and demyelination are much more robustly seen 
in FLAIR than with T1/T2 (Gorelick et al., 2011). Although primarily 

used for lesion load and location analysis, studies are emerging that 
demonstrate that other measurements from FLAIR could be a valuable 
addition to biomarker pipelines. For example, in Maillard et al. (2013) 
FLAIR intensity in the regions around WML (the WML penumbra) were 
found to be an independent predictor for WML growth or de novo 
development, and the authors suggest that FLAIR should be considered 
as a continuous index of WM health and not be considered an inferior 
version of dMRI (Maillard et al., 2013). In De Groot et al. (2013), the 
authors show that dMRI and FLAIR signal intensity of the NAWM were 
associated with WML development independently (De Groot et al., 
2013), which suggests they are capturing different pathological mech-
anisms. FLAIR contrast in WM is indirectly related to the attenuation of 
lipid protons within the myelin but there are many histopathological 
correlates suggesting more research into FLAIR MRI biomarkers is 
needed (Maillard et al., 2013). The authors stated that using FLAIR 
measurements from retrospectively collected FLAIR, with or without 
DTI, could “add substantial power to detecting treatment related dif-
ferences” (Maillard et al., 2013). Although promising, the authors did 
not correlate FLAIR biomarkers to cognitive score. 

To this end, we propose a novel biomarker panel that quantifies 
macro and microstructural biomarkers from the normal-appearing brain 
matter (NABM) in FLAIR MRI and investigate whether structural brain 
differences are associated with cognition. The NABM is composed of the 
normal white and gray matter regions of the brain, with the lesions and 
CSF stripped out. In Scola et al. (2010), analysis of GM and WM (NABM) 
regions for subjects with WML revealed increased water diffusion using 
DTI in the NABM which is suspected to indicate overall tissue loosening 
in GM and WM. In other works, both GM and WM were analyzed using 
dMRI and it was found that in regions with GM atrophy there is more 
diffusion and also less constrained flow in the WM for AD subjects (Scola 
et al., 2010). We opt for whole brain analysis where biomarkers are 
measured from the entire NABM region to quantify global disease 
burden as opposed to regions of interest or voxel-wise analysis since 
measurement variability in these methods can affect the ability (power) 
to detect change (Nave et al., 2007). 

Three groups of biomarkers are proposed related to the intensity, 
texture and volume of the NABM region in FLAIR images. The texture 
biomarkers measure the structural integrity/damage of the NABM and 
three new features are proposed: macrostructural damage (MAD), 
microstructural damage (MID) and microstructural integrity (MII). The 
intensity features include the median intensity, the skewness and kur-
tosis of the intensity distribution of the NABM, and volume, measured as 
the ratio of the NABM volume normalized by the intracranial volume 
(ICV). Biomarkers are defined for a single sequence (FLAIR), without 
dependence on T1 or DWI. These were measured in over 1400 imaging 
volumes, from 87 international imaging centres from three datasets of 
patients with dementia, AD and vascular disease. 

We hypothesize that FLAIR derived biomarkers in the NABM can 
differentiate between cognitively normal and cognitively impaired 
subjects. We further hypothesize that texture features from FLAIR MRI 
can be used to quantify microstructural changes related to how “struc-
tured” or “damaged” the tissue is. As FLAIR MRI is routinely collected 
for clinical neurological examinations, novel biomarkers from FLAIR 
MRI could supplement current clinical workflows for disease moni-
toring. Additionally, since FLAIR MRI contains CVD clues, this sequence 
could shed light into the relationship between CVD and dementia, for 
identifying early disease markers and determining optimal timing for 
therapeutic intervention. 

2. Materials and methods 

Three groups of NABM biomarkers for multicentre FLAIR MRI 
related to texture, intensity and volume were designed. In contrast to 
previous methods that mainly focus on volumetric biomarkers, the 
proposed biomarker panel quantifies both microstructural and macro-
structural characteristics of the NABM region in one framework. The 
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pipeline of the proposed work can be seen in Fig. 1. 

2.1. Data 

Three large, multicentre neuroimaging archives with axial FLAIR 
MRI and clinical data were used in this study. The summary of these 
three datasets are shown in Table 1. Data was acquired from over 80 
international centres worldwide, and the imaging parameters are 
described in Table 2 The first dataset, ADNI (Alzheimer’s Disease Neu-
roimaging Initiative) (Aisen et al., 2021), includes Normal Controls 
(NC), Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) 
subjects from 1043 patients. The second data repository is CAIN (Ca-
nadian Atherosclerosis Imaging Network) (Tardif et al., 2013) which is a 
Canadian study investigating CVD on subjects with moderate to high 
stenosis and contains 383 patients. The last dataset, CCNA, is from the 
Canadian Consortium on Neurodegeneration in Aging (CCNA), a pan- 
Canadian study related to the common dementias (AD, Parkinson’s 
disease, Lewy Body, Frontotemporal Lobar Dementia and Subcortical 
Vascular Cognitive Impairment) (Mohaddes et al., 2021; Jessen et al., 
2014). Only the 191 patients from CCNA with AD-type pathologies were 
analyzed. ADNI provides image quality scores where 3 and 4 indicates 
poor quality likely not optimal for automated analysis (Jack, 2011). In 

total 132 volumes were rated poor image quality and were excluded 
resulting in 1485 imaging volumes for ADNI, CCNA and CAIN combined. 

Clinical data included age and sex (all data sets), MoCA score (all 
data sets) and dementia diagnosis (ADNI, CCNA). MoCA was thresh-
olded to find Normal Controls (NC) (MoCA ⩾ 26), MCI (MoCA 19–25) 
and AD (MoCA ⩽ 18) and the sample sizes are shown in Table 3. Diag-
nosis for both CCNA and ADNI were obtained through a battery of 
clinical instruments (Mohaddes et al., 2021; Alzheimer’s Disease Neu-
roimaging Initiative, 2008). The datasets were treated cross-sectionally 
and the baseline FLAIR volumes (first time point) of each subject was 
analyzed and used to determine cognitive status. Statistical analysis 
used all cohorts combined (ADNI, CCNA, CAIN) for a pooled analysis. 
Post-hoc exploratory analysis considered individual cohorts since the 
diagnostic labels were generated using different clinical instruments. 
There was appropriate consent and ethics approval to access the data. 

For the same datasets, there were 52 CCNA imaging volumes and 46 
CAIN imaging volumes with corresponding dMRI imaging data. CAIN 
dMRI data was acquired using a GE 3T Scanner, TR = 8800 ms, TE =
75.9–83.2 ms, along 25 directions using a b-value of 1000 s/mm2 and 
spatial resolutions of 1.4844× 1.4844× 3.6 mm. The CCNA data was 
acquired using a Siemens 3T Scanner, TR = 9400–13000 ms, TE =
64–101 ms along 31 directions using a b-value of 1000 s/mm2 with 
spatial resolutions of 2× 2× 2 mm. 

2.2. NABM segmentation 

To manage variability in multicentre FLAIR MRI data, the stan-
dardization pipeline in Reiche et al. (2019) was employed to reduce 
noise, bias field and intensity variability across scanners. The result is a 
more consistent intensity interval for tissues across different subjects. 
Following intensity standardization, whole volume brain extraction for 
FLAIR MRI (DiGregorio et al., 2021) is used to extract the intra-cranial 

Fig. 1. Pipeline outlining major steps in this work; Original slice, NABM segmentation, resultant texture feature maps, along with statistical analysis.  

Table 1 
Summary of three databases used in this study.  

Database Disease Centres Patients Volumes Images Scanners Sex Age 

ADNI AD 58 911 911 32,796 GE, Philips, Siemens 479 M/ 432 F 73.2 
CCNA Dementia 21 191 191 9168 GE, Philips, Siemens 96 M/ 95 F 71.7 
CAIN Vascular 8 383 383 18,767 GE, Philips, Siemens 237 M/ 143 F 70.3 
All All 87 1485 1485 60,731 GE, Philips, Siemens 812 M/ 670 F 71.7  

Table 2 
Database acquisition parameters.  

Database Vendors TR (ms) TE (ms) TI (ms) Pixel Spacing Slice Thickness 

ADNI GE, Philips, Siemens 6000–11900 90–192.65 2000–2800 0.785–1.02 mm 5 mm 
CCNA GE, Philips, Siemens 9000–9840 120–146.44 2250–2500 0.9375 mm 3 mm 
CAIN GE, Philips, Siemens 8000–11000 117–150.24 2200–2800 0.42–1 mm 3, 5 mm  

Table 3 
MoCA datasplits and corresponding number of subjects per dataset.  

Database Normal (⩾26)  MCI (19–25) AD (⩽18)  

ADNI 256 464 98 
CCNA 68 81 17 
CAIN 216 127 14 
All 540 672 129  
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volume (ICV) using UNET (DiGregorio et al., 2021). Spatial resampling 
was then performed to ensure local features are comparable across 
subjects that have different resolutions. The data is resampled to 1 mm ×
1 mm × 1 mm using linear interpolation and cropping. The resultant 
resampled volumes have the same field of view, voxel size, and resolu-
tion. Using the intensity standardized, brain extracted and spatially 
resampled volumes, the same intensity thresholds were applied across 
the datasets to extract the NABM region by removing the CSF and 
hyperintense objects (white matter lesions) (Reiche et al., 2019; 
DiGregorio et al., 2021; Khademi et al., 2019). The WMH mask was 
dilated to avoid partial volume contamination. Several biomarkers are 
extracted from the NABM region as described below. 

2.3. NABM biomarkers 

Texture Biomarkers: Given an image slice I(x, y, z), I ∈ [0, L − 1] with L 
number of gray levels in the volume, and (x, y, z) ∈ Z3 spatial co-
ordinates, features were extracted from local windows w(x, y) from each 
slice z. We investigated the finest window possible, which results in a 
physical width of 3 mm. The sliding window w(x, y) moves through the 
slice being processed I(x, y), computes a texture feature at the spatial 
location (x, y) to create a 2D feature map F(x, y). The 2D feature maps 
were then averaged voxel-wise across slices from the 3D volume, to 
generate the mean feature map F(x,y), that describes the global texture 
of the NABM per subject. Averaging helped to suppress noise, while 
amplifying the texture signal (as is common in synchronized averaging 
approaches (Michalski et al., 2011)). Based on the average feature maps 
F(x,y), the median was extracted median(F) to result in a single metric 
(per imaging volume) that represents the global disease burden. In this 
work, three different texture features were explored. 

Macrostructural Damage (MAD): The NABM macrostructural 
damage biomarker is based on a 2D version of Mantel’s test for spatial 
correlation as first proposed for images in Khademi (2009), which was 
later used to detect architectural distortion in mammograms (Ran-
gayyan et al., 2012). The Mantel statistic (M2), quantifies the amount of 
spatial correlation between pixels by examining whether pixels that are 
close to one another are coupled with similar intensity values. The M2 is 
large in regions with rapidly changing intensities, such as edges and 
textures, and low in homogeneous regions. Mantel’s statistic M2 was 
calculated as a proxy for macrostructural damage by: 

M2 =
∑N

i=1

∑N

j=1
WijUij (1)  

where, Wij is the distance between pixels si and sj and Uij is the proximity 
of intensities I(si) and I(sj) to one another. Window size for this analysis 
was fixed and as a result the distance between gray-levels is a driving 
factor in measuring texture properties with this metric. M2 was 
computed on a per-slice and per-voxel basis to find the texture map 
FMAD(x, y) for each slice, and the mean texture map FMAD(x, y) was ob-
tained through voxel-wise averaging of the 2D feature slices. Since high 
M2 values can occur on boundaries of the brain, the brain mask was 
eroded with a kernel width equivalent to the analysis window size to 
remove them. In regions with rapidly changing intensities (textures, 
discontinuities, edges), M2 is high, indicating more fluctuations in the 
local intensities. Since this both measures the local structural variations 
within the NABM tissue as well as larger scale features related to dis-
continuities (edges) between tissue classes we call this the macrostruc-
tural damage (MAD) marker. 

Microstructural Damage (MID): To analyze microstructural 
texture, Mantel’s statistic M2 was calculated per slice as per the 
macrostructural damage (MAD) marker, but instead, before performing 
voxel-wise averaging, the large M2 values were automatically removed 
using Otsu’s thresholding to yield only small intensity differences. 
Although large M2 features are clinically relevant and could be related to 

large intensity differences caused by edges or gross patterns (i.e. brains 
with more atrophy, or more lesions) the microstructural damage feature 
focuses more on the internal (small) variations within the NABM tissue. 
The microstructural damage feature map is denoted FMID(x, y) and voxel- 
wise averaging was completed to compute the global disease burden 
over the volume FMID(x,y). 

Microstructural Integrity (MII): A microstructural integrity (MII) 
marker based on local binary patterns (LBP) is proposed. LBP descriptors 
efficiently capture the local spatial patterns and the gray scale contrast 
in an image (Ojala et al., 1994; Ojala et al., 1996; Oppedal et al., 2015). 
Differences in intensity values in the local area are compared to the 
center pixel to define a texture pattern, and then LBP embeds this spatial 
structure into its descriptor. LBP descriptors can capture rapid changes 
in intensity, such as edge lines or ridges, since these regions have a 
higher intensity compared to their spatial neighborhood valleys. It has 
been used in many applications including facial recognition (Rahim 
et al., 2013) and MRI for brain tumor detection and dementia classifi-
cation (Oppedal et al., 2015; Abbasi and Tajeripour, 2016). The LBP 
descriptor was used to quantify the overall microstructural integrity of 
the NABM in FLAIR MRI. Given a neighbourhood w(x, y) with a center 
pixel intensity Ic and neighboring pixels Ip, where P is the number of 
neighbors, the LBP descriptor is found by comparing the neighbouring 
pixels, Ip, to the center pixel, Ic, as in: 

LBPP =
∑P− 1

p=0
s

(

Ip − Ic

)

2P (2)  

where s is the indicator function such that s(x) = 1 when x > 0 and s(x)
= 0 otherwise (Sairamya et al., 2019; Ojala et al., 2002). In this work, 
we employed the LBP operator on a 3× 3 square neighbourhood 
(Tajeripour et al., 2007) to capture fine differences. The LPBP descriptor 
was used as a measure of structural integrity in this work since higher 
LBP descriptors generally describe patterns such as valleys and edges. In 
images with these similar “structured” patterns throughout the brain, 
there would be a high number of occurrences of these (larger) LBP de-
scriptors (and more integrity). 

Intensity Biomarkers: To measure the intensity of the NABM region, 
the median intensity was computed. In contrast to some recent works 
that examine FLAIR intensities only in regions surrounding WML, this 
biomarker investigates the changes in intensity of the NABM on a more 
global scale as both GM and WM are included in the analysis. In addition 
to median intensity, intensity skewness s and kurtosis κ were also 
investigated for the NABM of each volume. Skewness measures the (lack 
of) symmetry in the intensity distribution and gives indication whether 
the NABM region has more or less high intensities. Kurtosis measures 
how peaked a distribution is and could indicate more homogeneity in 
the NABM region for more peaked intensity distributions. 

Volume Biomarkers: A macrostructural biomarker based on the NABM 
volume was included to complete the biomarker panel. Recall the NABM 
is the brain with hyperintensities and CSF stripped out. The volume in 
this region was computed by summing up the voxels in the NABM region 
and multiplying by the voxel resolution. To ensure differences in head 
size do not affect analysis, the NABM volume was normalized by the 
intracranial volume (ICV) to measure the NABM volume ratio: 

volratio =
volNABM

volICV
(3)  

2.4. Biomarker correlation analysis 

To investigate characteristics of the FLAIR biomarkers, correlation 
analysis was performed. First, FLAIR MRI biomarkers were correlated to 
find relationships between biomarkers. Pearsons’s correlation was re-
ported, along with p-value. The analysis investigated the relationship of 
FLAIR MRI biomarkers to quantitative metrics from the corresponding 
dMRI volumes. Fractional Anisotropy (FA) and Mean Diffusibility (MD) 
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are common dMRI metrics used extensively in dementia and vascular 
disease research (Oishi et al., 2011; Alves et al., 2012). FA measures the 
degree of anisotropy of a water molecule (Morgan et al., 2013) and MD 
describes the total diffusion in each voxel related to disruption and 
degeneration of tissue microstructure in the WM (Chanraud et al., 2010) 
and demyelination and axonal loss (Lenglet, 2015) and gliosis, astro-
cytic alterations and other necrotic changes in the GM (Alexander et al., 
2007). As shown in Scola et al. (2010), the MD of GM and WM both 
increase with progression of disease and neurodegeneration (Scola et al., 
2010; Weston et al., 2015), indicating an increase of water diffusion is 
associated with both WM damage and GM loss (atrophy). However, FA 
histograms created from whole brain images containing GM and WM are 
the superimposition of two opposing trends (Della Nave et al., 2007). 
WM is a heavily anisotropic (higher FA values), while GM is much more 
isotropic (Lower FA values) (Della Nave et al., 2007; Hecke et al., 2016). 
The opposing values for GM and WM makes it difficult to elucidate 
changes in FA with both these two tissues combined. Therefore, only MD 
was explored for NABM analysis. MD is extracted using TractoFlow 
pipeline which was developed by the Sherbrooke Connectivity Imaging 

Lab (Theaud et al., 2020). FLAIR and MD were co-registered using ANTs 
SyN registration for the same subject and the FLAIR NABM mask was 
transformed to the dMRI space to avoid warping and to improve align-
ment, especially in ventricular regions. The median MD is extracted 
from each volume and compared to FLAIR MRI biomarkers using 
Pearson’s correlation analysis. 

2.5. Analysis and statistics 

To examine whether differences in micro- and macro-structure of the 
NABM in FLAIR MRI are related to cognition, ANOVA and ANCOVA 
analysis was used. As MoCA is available for all three datasets, MoCA was 
used to group patients into cognitive categories of NC, MCI and AD (see 
Table 3 for MoCA ranges and sample sizes). To gauge normality of the 
biomarker distributions, goodness of fit measures were performed and 
the data transformation was not necessary. Unadjusted univariable an-
alyses (t-test, chi-square/ Fisher’s exact) were performed to assess re-
lationships were appropriate. The Pearson correlation coefficient was 
used to compute the correlation between cross-sectional biomarkers and 

Fig. 2. NABM Segmentation in FLAIR MRI. Left to Right: Intensity standardized FLAIR MRI, skull-stripped, CSF, WML and final NABM segmentation.  

M.-A. Bahsoun et al.                                                                                                                                                                                                                           



NeuroImage: Clinical 34 (2022) 102955

6

other continuous independent variables. First, unadjusted analysis is 
reported that examines the differences in biomarker means across 
cognitive groups. Results were reported as difference in means and p- 
value (Tukey adjustment for multiple comparisons) for all seven bio-
markers. To examine the effect of age on the biomarkers, ANCOVA 
modeling with age and sex as covariates was performed to examine the 
interaction between age, sex and MOCA. For biomarkers that had a 
significant age*MoCA term, an additional two models were analyzed to 

investigate the two term interaction (sex*MoCA) and the three term 
interaction (age*sex*MoCA), respectively. If sex*MOCA term was sig-
nificant in the first model, additional post hoc analysis is used to 
investigate differences in biomarkers between MoCA categories and sex. 
If biomarkers had a significant age*sex*MoCA term in the second model, 
an additional analysis was performed to estimate the slopes of the bio-
markers for each MoCA-sex group as a function of age. The intent is to 
find biomarkers that stratify between disease groups that also have an 

Fig. 3. Left: microstructural feature extraction exhibiting 2D feature slices and the corresponding averaged feature map, for normal (MoCA ⩾ 26), MCI (MoCA 
19–25) and AD (MoCA ⩽ 18). Right: corresponding histograms for the mean feature maps. 

M.-A. Bahsoun et al.                                                                                                                                                                                                                           



NeuroImage: Clinical 34 (2022) 102955

7

age dependence, so biomarkers may be used to predict disease pro-
gression, trajectory and to determine optimal intervention times. Sta-
tistical significance was considered for p < 0.05. All statistical analysis 
was performed using SAS 9.4 (The SAS Institute, Cary, NC, USA). 

3. Results 

Seven NABM biomarkers were extracted across ADNI, CAIN and 
CCNA cohorts and their relationship to cognition is analyzed in this 
section. Intensity standardization was first employed to normalize the 
intensity interval of the brain region as shown in Fig. 12. The NABM 
region was then found by thresholding all images with the same in-
tensity thresholds for CSF and WML across patients (Reiche et al., 2019). 
Example NABM segmentations are shown in Fig. 2. For each imaging 
volume, the following NABM biomarkers were then extracted: micro-
structural integrity (MII), microstructural damage (MID), macrostruc-
tural damage (MAD), intensity, kurtosis, skewness and NABM to ICV 
volume ratio. 

3.1. Biomarker extraction 

Intensity and volume features were computed directly from the 

extracted NABM region. For texture features, the 2D feature maps were 
first computed for every slice: macrostructural damage FMAD(x, y), 
microstructural damage FMID(x, y) and microstructural integrity FMII(x,
y). The mean volume feature maps F(x, y) were computed through voxel- 
wise averaging of each of the respective feature maps to quantify global 
texture trends in the NABM. Biomarkers were measured as the median of 
F(x, y) for each volume. Fig. 3 has visual representations of the slice- 
based and volume-based texture features for normal, mild cognitive 
impairment (MCI) and Alzheimer’s disease (AD) determined from MoCA 
scores (see Data). For the macrostructural damage marker, boundaries 
have large feature values in the slice-based analysis along with finer 
variations within the NABM. In the feature map FMAD(x, y), there are 
more rapidly changing intensities within the NABM (less homogeneity) 
with decreasing cognitive performance. The microstructural integrity 
(MII) marker measures intensity patterns within the cerebral tissue 
related to linear structures, ridges and valleys. As shown in Fig. 3 there is 
more structure (or integrity) in the cognitively normal subject. The 
histograms for each of the texture biomarkers in Fig. 3 exhibit differ-
ences between normal, MCI and AD disease groups, as well. There are 
smaller differences and more overlapping values for the MII biomarker 
across cognitive groups. This could be due to some regions of the brain 

Fig. 4. All FLAIR biomarkers versus each other. This figure shows the relationships between the biomarkers.  
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having heterogeneity (normal and abnormal tissue). 
For each biomarker, outlier analysis was conducted to exclude 

extreme values caused by possible remaining image quality issues or 
measurement error. Outliers were detected as 1.5 interquartile distance 
above the upper quartile or below the lower quartile. Outlier detected 
volumes were visually inspected and removed if the volumes displayed 
evidence of ringing artifact, bias field, or brain mask issues. The 
remainder were included in the final dataset. In CCNA, an entire center 
had 100% of scans rejected with outlier analysis and upon inspection, 
this center had an extreme bias field issues. In total there were 14 CAIN 
(3.7%), 14 ADNI (1.5%) and 25 CCNA (13.1%) volumes, that were 
excluded resulting in 53 volumes in total (3.6%). 

The final distributions of biomarkers over all cohorts, for Normal, 
MCI and AD groups are shown in Figs. 13–19. Integrity quantifies the 
amount of structure that is related to edge-based patterns in the data. 
Over all the datasets, there is a trend of decreasing integrity for worse 
cognitive condition, indicating there is less structure in the brain. In 
diseased brains, the NABM contains more random patterns due to neu-
rodegeneration. The macro (MAD) and microstructural damage (MID) 
markers quantify NABM texture roughness by measuring local differ-
ences in intensity values. Lower values were found for better cognitive 
outcome (which increased for MCI and AD groups). A low value in-
dicates smooth or homogeneous tissue (less damage) whereas coarse 
textures and regions with rapid intensity changes imply more neuro-
degeneration. In the interior of the NABM region, MAD and MID mea-
sure the fine changes in intensities which can be associated with WM 
tract degeneration and GM atrophy. The MAD biomarker also captures 
more global intensity differences related to NABM tissue loss as there are 
more edges due to atrophy, enlarged ventricles, and lesions. A decrease 
in median NABM intensity values for worse cognitive outcome was 
found. This may seem counter-intuitive as some recent studies found 
higher intensities in regions surrounding WML in FLAIR MRI (Maillard 
et al., 2013), which suggests there is pre-visible WM damage 

surrounding WML that could be earlier signs of disease (ischemia/ 
demylination). However, the NABM contains both WM and GM and 
changes in both tissue are reflected in the median FLAIR intensity 
measurement. As shown in Siemonsen et al. (2008), the intensity of the 
GM may decrease in T2 weighted images for atrophy and neuronal loss, 
and therefore, the decrease in the GM intensities may be overpowering 
the subtle changes in the WM. Higher kurtosis and skewness values were 
found across MoCA groups for better cognitive condition, indicating 
more tissue homogeneity and higher intensities overall. The NABM to 
ICV volume ratio measures the normalized volume of the GM and WM 
together with CSF and WML stripped out. Over all datasets, NABM to 
ICV volume ratio decreased for lower MoCA scores (worse cognitive 
condition), indicating that NABM tissue loss is related to cognitive 
decline. For healthy individuals, there can be little or no lesions present 
and the CSF spaces should be small, which results in a higher NABM 
volume in these subjects. For subjects with neurodegenerative disease, 
there is an increase in lesion load, ventricle size, CSF spaces and a 
decrease of GM and WM and these differences were robustly detected 
using the NABM to ICV volume ratio biomarker. 

3.2. Biomarker correlation analysis 

The relationships among FLAIR NABM biomarkers pairs shown in 
Fig. 4 and corresponding r and p-values are listed in Table 4. Correla-
tions that are higher than 0.5 are underlined in the table. Microstruc-
tural integrity (MII) was negatively correlated with macro (MAD) and 
microstructural damage (MID), with a higher overall correlation be-
tween integrity and macrostructural damage (r = − 0.56) as compared 
with microstructural damage (r = − 0.03), although statistical signifi-
cance was only seen between MII and MAD (p < 0.01). Other significant 
relationships show lower tissue integrity (MII) for decreased intensity (r 
= 0.45) and higher MII for higher NABM volumes (r = 0.89) respectively 
while demonstrating statistically significant relationships as well (p <

Table 4 
Correlation between FLAIR biomarkers. Underline is r > 0.5 and bold means significant.  

Features MII MAD MID Intensity Kurtosis Skewness NABM/ICV  

r p r p r p r p r p r p r p 

MII – – -0.56 <0.01  -0.03 0.30 0.45 <0.01  0.31 <0.01  0.01 0.79 0.89 <0.01  
MAD − 0.56 <0.01  – – 0.79 <0.01  0.08 <0.01  − 0.59 <0.01  0.27 <0.01  − 0.57 <0.01  
MID − 0.03 0.30 0.79 <0.01  – – 0.41 <0.01  − 0.53 <0.01  0.33 <0.01  ≈0  0.98 

Intensity 0.45 <0.01  0.08 <0.01  0.41 <0.01  – – − 0.25 <0.01  0.05 0.04 0.47 <0.01  
Kurtosis 0.31 <0.01  − 0.59 <0.01  0.53 <0.01  − 0.25 <0.01  – – − 0.09 <0.01  0.26 <0.01  

Skewness 0.01 0.79 0.27 <0.01  0.33 <0.01  0.05 0.04 − 0.09 <0.01  – – 0.04 0.09 
NABM/ICV 0.89 <0.01  − 0.57 <0.01  ≈0  0.98 0.47 <0.01  0.26 <0.01  0.04 0.09 – –  

Fig. 5. Comparison of DTI to FLAIR Biomarkers on the CCNA and CAIN Datasets – MD Median.  
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0.01). Macrostructural damage (MAD) was strongly negatively corre-
lated to the NABM to ICV volume ratio (r = − 0.57, p < 0.01), indicating 
that subjects with more damage, there is less NABM volume. The highest 
correlations were found between NABM to ICV volume ratio and 
microstructural integrity (r = 0.89, p < 0.01) as well as microstructural 
damage vs macrostructural damage (r = 0.79, p < 0.01). 

To investigate how FLAIR NABM biomarkers are related to water 
diffusion in the brain, FLAIR NABM biomarkers were correlated to the 
corresponding dMRI biomarkers. As previously discussed, since the 
NABM contains both WM and GM, only MD is explored for NABM 
analysis. In total, there were 52 CCNA dMRI volumes with 31 directions, 
and 46 dMRI volumes with 25 directions for CAIN. The MD was 
extracted and the registered NABM mask was used to mask out CSF and 
lesions. Median MD is extracted for the NABM and correlated to the 
corresponding FLAIR biomarkers for the same imaging volume. 

Fig. 5 shows FLAIR biomarkers plotted against median MD. As MD 
increases, integrity (MII), intensity, kurtosis and NABM to ICV volume 
ratio decreased while micro (MID) and macrostructural damage (MAD) 
increased. The strongest (significant) correlations were found between 
MD and: microstructural integrity (CCNA: r = − 0.66, CAIN: r = − 0.85, 
p < 0.01 respectively), macrostructural damage (CAIN: r = − 0.86, p  <
0.01) and NABM to ICV volume ratio (CCNA r = − 0.59, CAIN: r =
− 0.87, p < 0.01) the remaining correlation values can be seen in 
Table 5. Microstructural integrity relates to how structured the NABM 
tissue is, with less structure being attributed to neurodegeneration 
(higher MD). Conversely, subjects with higher MII values (more integ-
rity) also have lower MD values which are indicative of constrained 
water flow in a healthier brain. Micro and macrostructural damage 
biomarkers measure rapid changes in intensity, and quantify tissue 
roughness and loss. For increased micro and macrostructural damage, 
there was a similar increase in MD, indicative of more damage to the 
brain. Higher MD values can be attributed to less integrity of the WM 

and atrophy of the GM which creates less obstacles for water diffusion 
and as a result an increase in MD. With intensity, there is a negative 
relationship with MD which shows that for healthy subjects (low MD), 
there was higher intensities. While there may be more localized 
(increased) intensity changes in the WM (around WML for example), the 
NABM as a whole was found to be of lower intensity, which correlated to 
a reduction in MD compared to normal subjects (although the correla-
tions were moderate, CCNA:r = − 0.47, p < 0.01 and CAIN: r = − 0.19, p 
= 0.19). The NABM to ICV volume ratio was also highly correlated to 
MD in both datasets, indicating that as NABM volumes decreasd, MD 
increased. As NABM volume is related to tissue loss (i.e. reduced GM 
volume, increased CSF spaces, more lesions) the correlations suggest a 
relationship to water diffusion in the brain. It is worth noting that CAIN 
and CCNA are comprised of 25 and 31 directions, respectively, which 
can account for minor differences in the MD values between these 
datasets. Also, the sample size is small and in CAIN there were only two 
subjects classified as AD by their MoCA score so it may be hard to 
compare cohorts directly. Although there are minor differences in the 
level of correlations between dMRI and FLAIR across datasets (CCNA vs. 
CAIN), the trends are mostly the same. The main difference is between 
CAIN and CCNA in the kurtosis and MID biomarkers and this may be due 
to a bias field artifact in CCNA (see discussion), which spreads out the 
intensity distribution. Due to the small sample size this affect may be 
more noticeable in this analysis. 

3.3. Group analysis 

Differences in biomarker means across different cognitive groups 
were investigated using ANOVA and ANCOVA as detailed in the Analysis 
and Statistics section. The imaging volumes were grouped into NC, MCI 
and AD categories according to MoCA ranges across CCNA, CAIN and 
ADNI (see Data for ranges and sample sizes) and biomarkers for each 

Table 5 
Correlation between FLAIR and dMRI (MD) biomarkers in CAIN and CCNA. Underline is r > 0.5 and bold means significant.  

Dataset MII MAD MID Intensity Kurtosis Skewness NABM/ICV  

r p-value r p-value r p-value r p-value r p-value r p-value r p-value 

CCNA − 0.66 <0.01  0.34 0.014 0.00 1.00 − 0.47 <0.01  0.26 0.06 − 0.06 0.66 − 0.59 <0.01  
CAIN − 0.85 <0.01  0.86 <0.01  0.28 0.06 − 0.19 0.19 − 0.65 <0.01  − 0.13 0.39 − 0.87 <0.01   

Fig. 7. FLAIR NABM biomarkers vs Age and MoCA Groups.  
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imaging volume were computed. The biomarker distributions (boxplots) 
as a function MoCA category are shown in Figs. 13–19 for all datasets. 
With increasing disease progression (worse cognitive outcome), micro-
structural integrity (MII), intensity, kurtosis and NABM to ICV volume 
ratio biomarkers decreased while, micro (MID) and macrostructural 
damage (MAD) biomarkers increased. 

Unadjusted ANOVA analysis for MoCA category alone is reported for 
each biomarker in Table 6, and post hoc analysis showed significant 
differences across most biomarkers and groups, with the exception of 
MID (Normal vs. AD, Normal vs. MCI), intensity (MCI vs. AD), kurtosis 
(Normal vs. MCI) and skewness (Normal vs. AD, MCI vs. AD) compari-
sons. ANCOVA analysis for each biomarker across MoCA groups with 
age as a covariate is reported in Table 7 for the age*MoCA interaction 

term. Biomarkers with significant differences for the age*MOCA inter-
action term were MII, MAD, intensity, kurtosis and NABM to ICV volume 
ratio, indicating these biomarkers change with age differently for each 
MoCA category. Fig. 7 plots each biomarker with respect to age and 
MoCA category. Earlier in life, the MII, MAD, intensity, skewness and 
NABM volume biomarkers of MCI subjects are similar to the Normal 
subjects, whereas later in life the biomarkers of MCI subjects are more 
similar to those of AD subjects. The slopes of several biomarkers as a 
function of age are shown in Table 10 and Fig. 6. While there is a general 
trajectory with age and disease progression for each biomarker (i.e. 
increasing or decreasing with age), the MCI group demonstrated a more 
significant slope compared to the other two categories (normal and AD), 
which indicates that degeneration is happening fastest in this group. As 

Fig. 6. Slope of FLAIR NABM biomarkers vs age, for MoCA category and sex. NC: MoCA ⩾ 26, MCI: MoCA (19–25) and AD: MoCA ⩽ 18.  

Fig. 8. Adjusted biomarker means over all datasets for MoCA categories (NC/MCI/AD) determined using MoCA (see Data). As indicated in Table 8, there were 
significant differences between Normal vs. MCI (p < 0.01) for MII, MAD and NABM to ICV ratio biomarkers. Significant differences were also seen between MCI vs. 
AD (p < 0.01) for all biomarkers except for MID and skewness. Only the skewness biomarker did not show any significant difference (p < 0.01) between the Normal 
vs. AD groups. 
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Fig. 9. Relationship between two FLAIR NABM biomarkers computed for dementia (ADNI + CCNA) and vascular disease patients (CAIN + vMCI).  

Fig. 10. Mean biomarker values over the CCNA dataset. Datasplits for SCI/MCI/vMCI/AD determined using diagnostic label. As shown in Table 13, there were 
significant differences between MCI vs. V-MCI and SCI vs. V-MCI (p < 0.01) for MII, MAD and NABM to ICV ratio markers. Significant differences were also seen 
between V-MCI vs. AD for MID (p < 0.01), MCI vs. AD (p < 0.01) for MII and NABM to ICV ratio. Lastly, significant differences were found between SCI vs. AD for the 
MII, intensity and NABM to ICV ratio markers. 

Fig. 11. Mean biomarker values in ADNI with groups determined by diagnosis label. As described in Table 15, MII, MAD, MID, intensity and NABM ratio had 
significant differences (p < 0.01) for CN and AD, as well as MCI and AD. There were no significant differences in biomarkers found between CN and MCI. 
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this group is comprised of subjects that deteriorate rapidly, identifying 
them early and providing treatment could possibly improve outcomes. 

An additional model was considered to investigate any two-term or 
possible three-term interactions between age, sex and MoCA. While 
many multicentre data issues have been corrected through preprocess-
ing, there are other influencers in this relationship such as age and sex, 
as well as residual nuisance parameters related to scanner manufacturer 
and database. To ensure the relationship between MoCA and biomarker 
values were not confounded by other factors, in this analysis we adjusted 
for age, database, scanner and sex in the final model. The adjusted 
means over all data are listed in Table 9 and plotted in Fig. 8, demon-
strating similar trends to the unadjusted analysis. 

Post-hoc analysis in Table 8 revealed similar trends as unadjusted 
analysis in that adjusted means were significant across most groups and 
biomarkers, with few that showed no differences across groups: skew-
ness (across all groups), MID (Normal vs. MCI and MCI vs. AD), kurtosis 
(Normal vs. MCI) and intensity (Normal vs. MCI). No statistical signifi-
cance was found for sex*age*MoCA and sex*MoCA interaction terms 
over all biomarkers. It was observed that over all biomarkers with the 
exception of intensity and skewness (believed to be as a result of CCNA 
bias field issues - see Discussion), females exhibited generally “healthi-
er” biomarker values for MII, MAD, MID, kurtosis and NABM to ICV 
volume ratio as per Table 11. The means of sex by MoCA category 
differed, however, did not provide significance. 

3.4. Post-hoc exploratory analysis 

ADNI and CCNA are AD pathology datasets and CAIN is a vascular 
disease group. In this analysis, differences across datasets and diagnostic 
labels were examined through post hoc exploratory analysis. Using 
CCNA diagnostic labels there were 43 SCI, 88 MCI, 59 V-MCI (vascular 
MCI) and 35 AD subjects. In ADNI, there were 199 normal (CN) and 97 
subjective memory complaint subjects (merged into one CN group), 283 
early and 181 late MCI subjects (merged into an MCI group) and 137 AD 
subjects. To examine differences across disease types, a few of bio-
markers that had high correlations with one another were investigated 
in Fig. 9. There are clusters in the biomarkers that seem to differentiate 
between dementia (ADNI + CCNA) and CVD (CAIN + V-MCI), but also 
overlapping regions suggesting there are similarities in neuroanatomical 
profiles between diseases. That being said, there are some subtle dif-
ferences that can be mentioned. Firstly, when observing MAD vs. MID, 
subjects with vascular disease related pathology appeared to have 
higher microstructural and macrostructural damage as compared to the 
AD set. AD subjects are likely experiencing increased atrophy, ventricle 
sizes and decreased WM integrity that are reflected in these metrics. 
CVD is often associated with vascular lesions which increased the MAD 
biomarker (more tissue removed from stripping out the lesions as well as 
WM degeneration which caused rapid intensity changes) but the 
changes seem to be noticeable in the vascular group. Similarly, in the 
NABM volume vs. MAD comparison, the vascular group had higher 
NABM volumes over all, along with higher MAD compared to the AD 
group. With the MII vs. MID scatter plot, it can be seen that CVD clusters 
are on the higher end of the integrity range coupled with higher values 
of micro damage. There are slight differences between CAIN + vMCI and 
ADNI + CCNA, which may be due to differences in pathology (i.e. AD vs. 
vascular disease) but it also can be due to the fact that the CAIN cohort is 
comprised largely of cognitively in tact individuals (mean MoCA = 26). 
Differences between AD pathology and vascular disease will be inves-
tigated further in the future using these biomarkers. 

A secondary group analysis was investigated here where biomarker 
differences were examined according to the diagnostic labels that were 
available in ADNI and CCNA. The mean values for the MII, MAD and 
NABM to ICV volume ratio biomarkers for CCNA and ADNI are shown in 
Fig. 10 and Fig. 11. The overall trends in biomarkers over diagnostic 
labels follow those seen in the MoCA group analysis. For increasing 
cognitive impairment there was decline in MII (reduction in integrity or 

structure in the WM and GM) and NABM to ICV volume ratio (more 
tissue loss related to atrophy, large ventricles and lesions), along with an 
increase in MAD (increased ventricle sizes and pathology removed). The 
mean MII and NABM to ICV volume ratio biomarkers were similar be-
tween V-MCI and AD patients, whereas MAD was much higher for the V- 
MCI group compared to all. In ADNI there were similarities in mean 
biomarkers for the cognitively intact and MCI groups. The unadjusted 
ANOVA analysis is reported in Tables 12–15. There was statistical sig-
nificance between the differences of biomarkers of cognitively normal 
(or SCI) and AD groups in ADNI and CCNA (p < 0.01) for MII, intensity 
and NABM to ICV volume ratio. In terms of V-MCI and MCI, there were 
significant differences in biomarker means for MII, MAD and NABM to 
ICV volume ratio, indicating that subjects with V-MCI and MCI had 
different structural integrity, volumes and macrostructural damage. The 
intensity (related to GM loss) and MID (local tissue homogeneity) were 
significantly different between V-MCI and MCI. When comparing to AD, 
V-MCI and AD were similar over all biomarkers except for MID which 
could suggest microstructural changes were different between these two 
diseases (whereas there were similarities in integrity, intensity and 
volume). In contrast, MCI and AD in CCNA were similar over all bio-
markers except for MII, intensity and NABM to ICV volume ratio, indi-
cating that structural brain changes between MCI and AD are different 
(higher intensities, integrity and NABM tissue for better cognitive state). 

4. Discussion 

Compared to majority of works investigating biomarkers from T1 or 
DWI, this work defines biomarkers purely from FLAIR MRI which is a 
major novelty of the proposed approach. Other studies have begun 
investigating FLAIR features for neurodegenerative disease analysis and 
we believe this is an emerging field strongly supported by our work. In 
Maillard et al. (2013) the authors show FLAIR features in non-lesion 
regions uniquely predicted voxels that would convert into lesions, sug-
gesting FLAIR contains subtle signs of microstructural damage and 
neurodegeneration. In Maillard et al. (2013), FLAIR intensity provided 
information on the underlying tissue integrity of the WM and is also 
related to demyelination and ischemia. In De Groot et al. (2013), dMRI 
and FLAIR signal intensity of the NAWM were associated with WML 
development independently (De Groot et al., 2013), which suggests 
these sequences are capturing different pathological mechanisms. The 
authors stated that using FLAIR measurements from retrospectively 
collected FLAIR, with or without DTI, could “add substantial power to 
detecting treatment related differences” (Maillard et al., 2013). This is 
largely due to the fact that FLAIR is routinely acquired and widely 
available. Therefore, biomarkers from FLAIR can be used in clinical 
trials to improve study power, stratify patients and to determine optimal 
intervention times. Clinically, such biomarkers can be easily integrated 
into routine workflows. 

It was hypothesized that biomarkers from the normal-appearing 
brain matter (NABM) in FLAIR MRI can differentiate between cogni-
tively normal and cognitively impaired subjects. There were three 
groups of features defined for this task: texture (microstructural integ-
rity (MII), macrostructural damage (MAD), microstructural damage 
(MII)), intensity (median, skewness, kurtosis) and volume biomarkers 
(NABM to ICV volume ratio). Intensity standardization and spatial 
normalization allowed for fair comparison across biomarkers in a 
diverse dataset acquired with varying acquisition parameters and 
scanner vendors. Through statistical analysis of NABM biomarkers 
extracted in over 1400 imaging volumes from 87 centres worldwide, we 
established a relationship between structural brain changes in the NABM 
and cognition. There was a decrease in MII, intensity, kurtosis, skewness 
and NABM to ICV volume ratio for worse cognitive outcome, compared 
to MAD and MID that increased. In the adjusted ANCOVA model, there 
were significant differences in biomarker means across all MoCA cate-
gories (normal, MCI and AD) for the MII, MAD and NABM to ICV volume 
ratio biomarkers, demonstrating NABM biomarkers from FLAIR are 
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related to cognition. 
We further hypothesized that texture features from FLAIR MRI can 

be used to quantify microstructural changes related to how “structured” 
or “damaged” the tissue is. Texture features measure subtle intensity 
variations related to how rapid the intensities are changing in local re-
gions, or how smooth the tissue is. FLAIR contrast in the WM is related to 
attenuation of lipid protons within the myelin and thus carries impor-
tant information regarding the microstructure of the tissue (Maillard 
et al., 2013). Additionally, FLAIR highlights white matter lesions 
exceptionally well and as shown by pathological examination of post- 
mortem tissue, these lesions, which appear bright in FLAIR, exhibited 
venous collagenosis, vessel tortuosity, edema and demyelination (Black, 
2009; Keith et al., 2017) – indicating that FLAIR is capturing micro-
structural changes. Since subtle changes in FLAIR contrast are related to 
microstructural changes, texture measures from FLAIR may be related to 
neurodegeneration, ischemia, edema, vessel collagenosis, white matter 
tract degeneration, and/or GM tissue loss/loosening. When comparing 
to dMRI metrics, mean diffusivity (MD) was used and lower integrity 
(MII), and higher MAD and MID, were correlated to higher MD. As MD 
measures the total (magnitude of) diffusion in each voxel and higher MD 
values are associated to tissue degeneration, trends in these features 
further support the hypothesis that NABM texture is related to structure 
and damage of the GM and WM. As a result, the novel FLAIR-only 
texture biomarkers have some relationship with tissue microstructure 
and open up the possibility for new clinical applications and avenues for 
measuring neurodegeneration in the brain without dependence on other 
sequences such as dMRI. In the future, more analysis into the histo-
pathological correlates of the FLAIR-only texture features will be 
considered. 

A major innovation of the paper is the identification of age- 
dependent trends in the MII, MAD, intensity, kurtosis and NABM to 
ICV volume ratio biomarkers that vary differently across MoCA cate-
gories. These were discovered, we believe, due to the novel nature of the 
biomarkers, the rigorous preprocessing strategies to reduce measure-
ment variability and increase sensitivity, and the size of the cohort that 
was analyzed. This relationship exists even after adjusting for con-
founding effects of database and manufacturer. Age-dependent 
biomarker curves have utility in tracking disease progression, in an 
analogous manner as growth curves or charts for children. Clinically, it 
could be possible to measure a patient’s NABM biomarkers and compare 
them to population curves for the NC, MCI and AD groups to monitor 
neurodegeneration and determine optimal treatment points. For drug 
development, these biomarkers can be used to stratify patients into 
homogeneous groups for clinical trials. MCI is a promising group to 
target since 1) they degenerate the fastest and 2) permanent brain 
damage has not occurred yet. The proposed biomarkers, which also were 
shown to be different among the sexes (although not significant), could 
be used to stratify and monitor patients. In spite of the fact that a trend 
was seen between sex and MoCA level, more data would be needed to 
confirm. 

Interestingly, the MCI group progressed the fastest (largest slope), 
which was followed by NC and then AD (had the lowest slope). The 
change in the normal group, which is less than the MCI group could be 
attributed to normal aging processes. However, for the AD group, as 
shown by Fig. 7 (age slope regression graphs), younger subjects in the 
AD group usually start off with a lower or higher “baseline” biomarker 
value earlier in life (more neurodegeneration) indicating these subjects 
could be presenting with underlying disease even early in life. As a 
result, the rate of degeneration may not be as high as the MCI group 
since damage had already been accruing. 

In post hoc exploratory analysis, group analysis was completed using 
the biomarkers over diagnostic labels in CCNA and ADNI. Unadjusted 
analysis found differences between biomarkers across many groups, 
including MCI, V-MCI and AD groups. V-MCI patients are diagnosed 
according to MoCA (13–24 inclusive), CERAD word list recall <6, 
Lawton-Brody IADL scale score >14 and global CDR ⩽ 0.5 criteria 

(which is the same for the MCI group) but to determine the vascular 
nature, the T2 FLAIR was used, and Age-Related White Matter Change 
(ARWMC) was assessed. Compared to MCI, there are significant differ-
ences in the structural integrity (MII), intensity (GM loss) and NABM 
volume biomarkers compared to V-MCI. The MII biomarker was lower in 
patients with V-MCI than MCI, and was on the same order as subjects 
with AD indicating the structural integrity of V-MCI and AD patients are 
similar. Similar trends were seen with NABM to ICV volume ratio, in that 
the NABM volumes of V-MCI subjects were similar to subjects with AD. 
While the NABM ratio takes into account tissue loss in the GM/WM and 
enlarged CSF spaces which are associated with AD, larger lesion loads 
are typical in V-MCI and could reduce the total NABM volume. Recent 
evidence is pointing towards a “two–hit” vascular hypothesis for AD and 
vascular disease, where hit one includes CVD risk factors that lead to 
blood brain barrier dysfunction and reduced cerebral blood flow that 
precedes dementia, followed by hit two caused by an increase in beta- 
amyloid amplifying neuronal dysfunction, neurodegeneration and dis-
ease (Lamar et al., 2020). In Meng et al. (2017), the authors suggest that 
vascular and neurodegenerative pathological processes have a supra- 
additive effect on cognitive performance. Perhaps these biomarkers 
are demonstrating this effect. In future works, further investigation into 
the differences across biomarker profiles for vascular disease and de-
mentia will be conducted. Understanding the overlap in neuroanatom-
ical profiles associated with CVD risk factors and dementia can lead to 
more optimized therapies. Cerebrovascular disease (CVD) is the second 
most common contributor to dementia risk (Smith et al., 2017) and early 
CVD may represent a pivotal stage to intervene before irreversible brain 
injury and disability occurs (Smith et al., 2017; Black et al., 2011). CVD 
risk factors are no longer seen as more relevant to vascular dementia but 
share a common etiology for all the dementias (Lamar et al., 2020). 
Targeting modifiable vascular risk factors that contribute to cognitive 
impairment and neurodegeneration would be paradigm changing (Badji 
and Westman, 2020). 

Limitations and challenges were noted with this work. First, only MD 
(and not FA) was investigated here, since as was shown in Nave et al. 
(2007) the changes in fractional anisotropy (FA) for GM and WM were 
opposing, and any small differences are a superposition of these 
opposing trends which makes it difficult to elucidate any changes. In the 
future we will further investigate both MD and FA dMRI metrics for GM 
and WM separately to further understand neurodegeneration as 
described by the proposed FLAIR NABM biomarkers. If possible, histo-
pathological studies related to FLAIR intensity and texture could be 
considered. In the CCNA dataset, despite intensity standardization and 
bias field reduction, slightly higher intensities were noticed across pa-
tients compared to ADNI and CAIN. This could have an impact on the 
intensity biomarkers, as well as microstructural damage feature which is 
found by Otsu thresholding the macrostructural damage (MAD) feature 
maps. In cases with severe bias field artifact, they were detected as 
outliers and removed from the analysis but some volumes still remained. 
In the future, we will investigate a more robust bias field reduction 
technique and/or better outlier reduction techniques. This intensity bias 
likely affected correlation between the MD metrics and the FLAIR-based 
MID and intensity biomarkers, such as kurtosis. Sample size in the DTI 
analysis also likely contributed to these issues, although some prominent 
trends were found, especially between MII, MAD and NABM/ICV bio-
markers. Another challenge found was in some CAIN cases that had 
biomarkers that were close to the interquartile ranges but were not 
rejected. Upon inspection, some of these subjects have moderate to se-
vere WML patterns (vascular damage) - but have high MoCA scores 
indicating they are cognitively intact (see example slices from these 
subjects and their respective MoCA in Fig. 20). The NABM biomarker 
panel for these patients show that the biomarkers fall into the range of 
MCI and AD indicating that the tool is picking up neurodegeneration. It 
is possible that these patients while not suffering noticeable cognitive 
deficits, may suddenly suffer decline if more damage accumulates (tip 
the balance). There are other factors that can come into play here, as 
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well, such as education and socio-economic status (Russ et al., 2013; 
Wilson et al., 2009) that have known to be protective against dementia. 
Therefore, these subjects may be on the verge of developing cognitive 
deficits. Lastly, analysis was performed cross-sectionally and without 
cross validation studies, which may be considered as a major limitation 
of the work. However, the main goal was to find associates between 
NABM features and cognition in the baseline cohort and believe we have 
satisfied those goals. In the future, we will examine the biomarkers in a 
longitudinal study and investigate clinically relevant cut-offs for the 
biomarkers, in the hopes of quantifying disease progression robustly and 
to determine optimal treatment points for patients suffering cognitive 
decline. 

Although many proof of concept biomarkers exist (tested in single 
centres with limited variability), there are only a few that are technically 
validated in large multicentre datasets to establish “proof of effective-
ness” which is a barrier to translation. Technical validation includes 
biomarker tests related to feasibility, accuracy, reproducibility and 
repeatability (Smith et al., 2019; Sullivan et al., 2015; Obuchowski et al., 
2015), and should precede clinical validation, otherwise it is difficult to 
determine if biomarker changes are from the biological process or 
technical variability of the biomarkers (Smith et al., 2019). Biomarkers 
should be investigated on smaller, more controlled datasets; then scaled 
to large multi-centre sets to prove effectiveness. Once effectiveness is 
shown, clinical utility can be investigated. We believe this work makes 
headway on many of those goals. All preprocessing and segmentation 
tools have been extensively validated on multicenter datasets, and 
clinical utility is established by demonstrating that structural brain 
differences in the normal-appearing brain matter (NABM) in FLAIR MRI 
are associated with cognition. 

5. Conclusions 

In this work, a novel biomarker panel from the normal-appearing 
brain matter (NABM) in FLAIR MRI was designed, which included in-
tensity, texture and volume-based features. The texture-based NABM 
biomarkers had high correlation with diffusion MRI metrics, suggesting 
that FLAIR MRI can be used to characterize subtle details related to 
tissue microstructure. On a dataset of more than1400 subjects from 87 
international centers, statistical analysis revealed that the new NABM 
biomarkers were significantly associated with cognition. Age-based 
analysis also demonstrated that NABM biomarkers vary significantly 
as a function of age and cognitive group, with the mild cognitive 

impairment (MCI) category often displaying the most rapid decline over 
age, as compared to normal controls and patients with advanced de-
mentia. On post hoc exploratory analysis, the biomarkers differentiated 
between subjects with vascular disease and dementia, which creates 
possibilities of using these biomarkers to learn more about disease eti-
ology and for patient stratification. 
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Appendix  

Fig. 12. Original intensity histograms (left) per subject which shows intensity variability across brain regions in multicentre data. The intensity histograms of the 
intensity standardized images (right) show that intensity intervals for tissues across subjects are normalized for fair biomarker comparisons. 
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Fig. 13. Microstructural Integrity (MII) NABM biomarkers for normal (MoCA ⩾ 26), MCI (MoCA 19–25), AD (MoCA ⩽ 18).  

Fig. 14. Macrostructural Damage (MAD) NABM biomarkers for normal (MoCA ⩾ 26), MCI (MoCA 19–25), AD (MoCA ⩽ 18).  

Fig. 15. Microstructural Damage (MID) NABM biomarkers for normal (MoCA ⩾ 26), MCI (MoCA 19–25), AD (MoCA ⩽ 18).  
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Fig. 16. Intensity of the NABM for normal (MoCA ⩾ 26), MCI (MoCA 19–25), AD (MoCA ⩽ 18).  

Fig. 17. Intensity skewness of the NABM for normal (MoCA ⩾ 26), MCI (MoCA 19–25), AD (MoCA ⩽ 18).  

Fig. 18. Intensity kurtosis of the NABM for normal (MoCA ⩾ 26), MCI (MoCA 19–25), AD (MoCA ⩽ 18).  
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Fig. 19. NABM/ICV volume ratios for normal (MoCA ⩾ 26), MCI (MoCA 19–25), AD (MoCA ⩽ 18).  

Fig. 20. Sample slices from varying CAIN volumes with normal MoCA scores.  

Table 6 
Unadjusted ANOVA analysis of difference in biomarker means for all datasets using MoCA groups: Normal (⩾26) vs MCI (19–25) vs AD (⩽18). Reported as difference in 
means (effect) and p-value. P-values < 0.01 indicate significant differences (*).  

Features Normal vs MCI MCI vs AD Normal vs AD  

Effect p Effect p Effect p 

Integrity (MII) 1.21 <0.01*  1.63 <0.01*  2.84 <0.01*  
Macrostructural Damage (MAD) 150.40 <0.01*  516.47 <0.01*  666.90 <0.01*  
Microstructural Damage (MID) 0.31 0.06 0.62 <0.01*  0.31 0.30 

Intensity 1.52 <0.01*  0.97 0.09 2.49 <0.01*  
Kurtosis ≈0  0.93 0.09 <0.01*  0.095 <0.01*  

Skewness 0.02 <0.01*  ≈0  0.94 0.02 0.25 
NABM/ICV 0.02 <0.01*  0.04 <0.01*  0.06 <0.01*   

Table 7 
Interaction terms. Age*MoCA is from the ANCOVA model with only age as a covariate. Reported as F and p-values.  

Features Age*MoCA  

F Pr > F  

Integrity (MII) 3.95 0.0191 
Macrostructural Damage (MAD) 3.86 0.0213 
Microstructural Damage (MID) – – 

Intensity 3.70 0.0248 
Kurtosis 6.95 0.0010 

Skewness – – 
NABM/ICV 6.00 0.0025  
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Table 8 
ANCOVA analysis of difference in biomarker means over MoCA groups: Normal (⩾26) vs MCI (19–25) vs AD (⩽18) adjusted for sex, age, scanner and database. Effect 
reported as difference in means. P-values < 0.01 indicate significant differences (*).  

Features Normal vs MCI MCI vs AD Normal vs AD  

Effect p Effect p Effect p 

Integrity (MII) 0.48 <0.01*  1.28 <0.01*  1.76 <0.01*  
Macrostructural Damage (MAD) 145.51 <0.01*  320.07 <0.01*  467.58 <0.01*  
Microstructural Damage (MID) 0.13 0.32 0.20 0.24 0.33 0.04* 

Intensity 0.28 0.51 1.44 <0.01*  1.72 <0.01*  
Kurtosis 0.02 0.11 0.07 <0.01*  0.09 <0.01*  

Skewness ≈0  0.99 ≈0  0.94 ≈0  0.92 
NABM/ICV 0.02 <0.01*  0.02 <0.01*  0.04 <0.01*   

Table 9 
Adjusted biomarker means for all datasets using MoCA groups: Normal (⩾26) vs MCI (19–25) vs AD (⩽18).  

Features NC MCI AD 

Microstructural Integrity (MII) 119.27 118.79 117.51 
Macrostructural Damage (MAD) 4897.93 5045.44 5365.51 
Microstructural Damage (MID) 12.60 12.73 12.93 

Intensity 281.67 281.39 279.95 
Kurtosis 2.75 2.73 2.66 

Skewness 0.171 0.170 0.167 
NABM/ICV Ratio 0.77 0.75 0.73  

Table 10 
Slopes for each MoCA category when age*MoCA interaction was significant.  

Features All  

MoCA 0 MoCA 1 MoCA 2  

Slope − 0.1113 − 0.1474 − 0.1180 
MII Standard Error 0.0106 0.0098 0.0233  

p-value <0.01*  <0.01*  <0.01*   
Slope 35.3789 45.9693 36.2244 

MAD Standard Error 3.3555 3.0301 6.4972  
p-value <0.01*  <0.01*  <0.01*   
Slope − 0.1907 − 0.1962 − 0.0753 

Intensity Standard Error 0.0248 0.0210 0.0448  
p-value <0.01*  <0.01*  0.0949  
Slope 0.0001 − 0.0049 − 0.0019 

Kurtosis Standard Error 0.0012 0.0010 0.0018  
p-value 0.9015 <0.01*  0.2776  
Slope − 0.0027 − 0.0035 − 0.0026 

NABM/ICV Ratio Standard Error 0.0002 0.0002 0.0004  
p-value <0.01*  <0.01*  <0.01*   

Table 11 
Average unadjusted biomarker values by sex.  

Features Female Male 

Integrity (MII) 119.43 ± 2.50  118.59 ± 2.54  
Macrostructural Damage (MAD) 4453.93 ± 826.67  4775.58 ± 834.12  
Microstructural Damage (MID) 11.03 ± 2.26  11.72 ± 2.24  

Intensity 280.22 ± 5.35  280.45 ± 5.31  
Kurtosis 2.86 ± 0.24  2.80 ± 0.24  

Skewness 0.11 ± 0.12  0.15 ± 0.11  
NABM/ICV 0.76 ± 0.05  0.75 ± 0.05   
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